Title: | Missing Item Responses Imputation for Test and Assessment Data |
---|---|
Description: | Functions for imputing missing item responses for dichotomous and polytomous test and assessment data. This package enables missing imputation methods that are suitable for test and assessment data, including: listwise (LW) deletion (see De Ayala et al. 2001 <doi:10.1111/j.1745-3984.2001.tb01124.x>), treating as incorrect (IN, see Lord, 1974 <doi: 10.1111/j.1745-3984.1974.tb00996.x>; Mislevy & Wu, 1996 <doi: 10.1002/j.2333-8504.1996.tb01708.x>; Pohl et al., 2014 <doi: 10.1177/0013164413504926>), person mean imputation (PM), item mean imputation (IM), two-way (TW) and response function (RF) imputation, (see Sijtsma & van der Ark, 2003 <doi: 10.1207/s15327906mbr3804_4>), logistic regression (LR) imputation, predictive mean matching (PMM), and expectation–maximization (EM) imputation (see Finch, 2008 <doi: 10.1111/j.1745-3984.2008.00062.x>). |
Authors: | Shenghai Dai [aut, cre], Xiaolin Wang [aut], Dubravka Svetina [aut] |
Maintainer: | Shenghai Dai <[email protected]> |
License: | GPL (>= 2) |
Version: | 2.3 |
Built: | 2024-11-04 04:19:26 UTC |
Source: | https://github.com/cran/TestDataImputation |
This function imputes for all missing responses using EM imputation (see Finch, 2008) <doi: 10.1111/j.1745-3984.2008.00062.x>. The Amelia package (Honaker et al., 2011 <doi: 10.18637/jss.v045.i07>) is used for the imputation. Integrated scores are then obtained by rounding imputed values to the closest possible response value.
EMimpute(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
EMimpute(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9). |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
max.score |
The max possible response value in the test data. By default max.score=1 (i.e.,binary test data). |
round.decimal |
The number of digits or decimal places for the imputed value. The default value is 0. |
A data frame with all missing responses replaced by integrated imputed values.
Finch, H. (2008). "Estimation of Item Response Theory Parameters in the Presence of Missing Data." Journal of Educational Measurement, 45(3), 225-245. doi: 10.1111/j.1745-3984.2008.00062.x.
Honaker, J., King, G., & Blackwell, M. (2011). "Amelia II: A program for missing data." Journal of statistical software, 45(1), 1-47. doi: 10.18637/jss.v045.i07.
EMimpute(test.data, Mvalue="NA",max.score=1,round.decimal=0)
EMimpute(test.data, Mvalue="NA",max.score=1,round.decimal=0)
This function imputes for all missing responses using the selected imputation method. Integrated scores are obtained by rounding imputed values to the closest possible response value.
ImputeTestData( test.data, Mvalue = "NA", max.score = 1, method = "LW", round.decimal = 0 )
ImputeTestData( test.data, Mvalue = "NA", max.score = 1, method = "LW", round.decimal = 0 )
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9). |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
max.score |
The max possible response value in test data. By default max.score=1 (i.e.,binary test data). max.score = 2 if the response categories are (0, 1, 2), etc. Note: For IN and RF, the lowest response value should be zero (i.e., incorrect). |
method |
Missing response imputation methods. |
round.decimal |
The number of digits or decimal places for the imputed value. The default value is 0. |
A data frame with all missing responses replaced by integrated imputed values.
De Ayala, R. J., Plake, B. S., & Impara, J. C. (2001). "The impact of omitted responses on the accuracy of ability estimation in item response theory." Journal of Educational Measurement, 38(3), 213-234. doi:10.1111/j.1745-3984.2001.tb01124.x.
Finch, H. (2008). "Estimation of Item Response Theory Parameters in the Presence of Missing Data." Journal of Educational Measurement, 45(3), 225-245. doi: 10.1111/j.1745-3984.2008.00062.x.
Honaker, J., King, G., & Blackwell, M. (2011). "Amelia II: A program for missing data." Journal of statistical software, 45(1), 1-47. doi: 10.18637/jss.v045.i07.
Lord, F. M. (1974). " Quick estimates of the relative efficiency of two tests as a function of ability level." Journal of Educational Measurement, 11(4), 247-254. doi: 10.1111/j.1745-3984.1974.tb00996.x.
Mislevy, R. J., & Wu, P. K. (1996). " Missing responses and IRT ability estimation: Omits, choice, time limits, and adaptive testing. " ETS Research Report Series, 1996(2), i-36. doi: 10.1002/j.2333-8504.1996.tb01708.x.
Pohl, S., Gräfe, L., & Rose, N. (2014). "Dealing with omitted and not-reached items in competence tests evaluating approaches accounting for missing responses in item response theory models. " Educational and Psychological Measurement, 74(3), 423-452. doi: 10.1177/0013164413504926.
Sijtsma, K., & Van der Ark, L. A. (2003). "Investigation and treatment of missing item scores in test and questionnaire data." Multivariate Behavioral Research, 38(4), 505-528. doi: 10.1207/s15327906mbr3804_4.
Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). "mice: Multivariate imputation by chained equations in R." Journal of statistical software, 45(1), 1-67. DOI: 10.18637/jss.v045.i03.
ImputeTestData(test.data, Mvalue="NA",max.score=1, method ="TW",round.decimal=0)
ImputeTestData(test.data, Mvalue="NA",max.score=1, method ="TW",round.decimal=0)
This function imputes for all missing responses of an item by its mean (i.e., IM) on the available responses. Integrated scores for items are obtained by rounding their means to the closest possible response value.
ItemMean(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
ItemMean(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9). |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
max.score |
The max possible response value in test data. By default max.score=1 (i.e.,binary test data). |
round.decimal |
The number of digits or decimal places for the imputed value. The default value is 0. |
A data frame with all missing responses replaced by Integrated item means.
ItemMean(test.data, Mvalue="NA",max.score=1,round.decimal=0)
ItemMean(test.data, Mvalue="NA",max.score=1,round.decimal=0)
This function deletes examinees who report missing responses (see De Ayala et al. 2001) <doi:10.1111/j.1745-3984.2001.tb01124.x>.
Listwise(test.data, Mvalue = "NA")
Listwise(test.data, Mvalue = "NA")
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9). |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
A data frame with no missing responses.
De Ayala, R. J., Plake, B. S., & Impara, J. C. (2001). "The impact of omitted responses on the accuracy of ability estimation in item response theory." Journal of Educational Measurement, 38(3), 213–234. doi:10.1111/j.1745-3984.2001.tb01124.x.
Listwise(test.data, Mvalue="NA")
Listwise(test.data, Mvalue="NA")
This function imputes for all missing responses using logistic regression (for binary responses) or polytomous regression (for polytomous responses). The mice () function with default settings from the mice package (Van Buuren & Groothuis-Oudshoorn, 2011 <doi: 10.18637/jss.v045.i03>) is used to impute for the missing responses.
LogisticReg(test.data, Mvalue = "NA", max.score = 1)
LogisticReg(test.data, Mvalue = "NA", max.score = 1)
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9). |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
max.score |
The max possible response value in test data. By default max.score=1 (i.e.,binary test data). |
A data frame with all missing responses replaced by integrated imputed values.
Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). "mice: Multivariate imputation by chained equations in R." Journal of statistical software, 45(1), 1-67. DOI: 10.18637/jss.v045.i03.
LogisticReg(test.data, Mvalue="NA",max.score=1)
LogisticReg(test.data, Mvalue="NA",max.score=1)
This function imputes for all missing responses using predictive mean matching. The mice () function with default settings from the mice package (Van Buuren & Groothuis-Oudshoorn, 2011 <doi: 10.18637/jss.v045.i03>) is used to impute for the missing responses.
micePMM(test.data, Mvalue = "NA")
micePMM(test.data, Mvalue = "NA")
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9). |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
A data frame with all missing responses replaced by integrated imputed values.
Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). "mice: Multivariate imputation by chained equations in R." Journal of statistical software, 45(1), 1-67. DOI: 10.18637/jss.v045.i03.
micePMM(test.data, Mvalue="NA")
micePMM(test.data, Mvalue="NA")
This function imputes for all missing responses of an examinee by his/her mean (i.e., PM) on the available items. Integrated scores for examinees are obtained by rounding their means to the closest possible response value.
PersonMean(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
PersonMean(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9). |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
max.score |
The max possible response value in test data. By default max.score=1 (i.e.,binary test data). |
round.decimal |
The number of digits or decimal places for the imputed value. The default value is 0. |
A data frame with all missing responses replaced by person means.
Sijtsma, K., & Van der Ark, L. A. (2003). "Investigation and treatment of missing item scores in test and questionnaire data." Multivariate Behavioral Research, 38(4), 505-528.DOI: 10.1207/s15327906mbr3804_4.
PersonMean(test.data, Mvalue="NA",max.score=1,round.decimal=0)
PersonMean(test.data, Mvalue="NA",max.score=1,round.decimal=0)
This function imputes for all missing responses using the response function imputation (Sijtsma and van der Ark, 2003 <doi: 10.1207/s15327906mbr3804_4>).
ResponseFun(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
ResponseFun(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9).#' |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
max.score |
The max possible response value in test data (the lowest response value should be 0). By default max.score=1 (i.e.,binary test data). max.score = 2 if the response categories are (0, 1, 2), etc. |
round.decimal |
The number of digits or decimal places for the imputed value. The default value is 0. |
A data frame with all missing responses imputed with response function.
Sijtsma, K., & Van der Ark, L. A. (2003). "Investigation and treatment of missing item scores in test and questionnaire data." Multivariate Behavioral Research, 38(4), 505-528. DOI: 10.1207/s15327906mbr3804_4.
ResponseFun(test.data, Mvalue="NA",max.score=1,round.decimal=0)
ResponseFun(test.data, Mvalue="NA",max.score=1,round.decimal=0)
This dataset contains binary responses of 775 participants to 20 items.Missing responses are coded as NA.
data("test.data")
data("test.data")
A data frame with 775 observations on the following 20 items.
Item_1
a numeric vector
Item_2
a numeric vector
Item_3
a numeric vector
Item_4
a numeric vector
Item_5
a numeric vector
Item_6
a numeric vector
Item_7
a numeric vector
Item_8
a numeric vector
Item_9
a numeric vector
Item_10
a numeric vector
Item_11
a numeric vector
Item_12
a numeric vector
Item_13
a numeric vector
Item_14
a numeric vector
Item_15
a numeric vector
Item_16
a numeric vector
Item_17
a numeric vector
Item_18
a numeric vector
Item_19
a numeric vector
Item_20
a numeric vector
A test data that contain binary responses of 775 participants to 20 items.Missing responses are coded as NA.
data(test.data) ## maybe str(test.data) ; plot(test.data) ...
data(test.data) ## maybe str(test.data) ; plot(test.data) ...
This function replaces all missing responses by zero (see Lord, 1974 <doi: 10.1111/j.1745-3984.1974.tb00996.x>; Mislevy & Wu, 1996 <doi: 10.1002/j.2333-8504.1996.tb01708.x>; Pohl et al., 2014 <doi: 10.1177/0013164413504926>);).
TreatIncorrect(test.data, Mvalue = "NA")
TreatIncorrect(test.data, Mvalue = "NA")
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9). |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
A data frame with all missing responses replaced by '0'.
Lord, F. M. (1974). " Quick estimates of the relative efficiency of two tests as a function of ability level." Journal of Educational Measurement, 11(4), 247-254. doi: 10.1111/j.1745-3984.1974.tb00996.x.
Mislevy, R. J., & Wu, P. K. (1996). " Missing responses and IRT ability estimation: Omits, choice, time limits, and adaptive testing. " ETS Research Report Series, 1996(2), i-36. doi: 10.1002/j.2333-8504.1996.tb01708.x.
Pohl, S., Gräfe, L., & Rose, N. (2014). "Dealing with omitted and not-reached items in competence tests evaluating approaches accounting for missing responses in item response theory models. " Educational and Psychological Measurement, 74(3), 423-452. doi: 10.1177/0013164413504926.
TreatIncorrect(test.data, Mvalue="NA")
TreatIncorrect(test.data, Mvalue="NA")
This function imputes for all missing responses using two-way imputation. Integrated responses are obtained by rounding imputed values to the closest possible response value. If a case showed missingness on all the variables (i.e., empty record), the missing values are replaced by item means first. see Sijtsma and van der Ark (2003) <doi: 10.1207/s15327906mbr3804_4>;
Twoway(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
Twoway(test.data, Mvalue = "NA", max.score = 1, round.decimal = 0)
test.data |
Test data set (a data frame or a matrix) containing missing responses. Missing values are coded as NA or other values (e.g., 8, 9).#' |
Mvalue |
Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default. |
max.score |
The max possible response value in test data. By default max.score=1 (i.e.,binary test data). |
round.decimal |
The number of digits or decimal places for the imputed value. The default value is 0. |
A data frame with all missing responses replaced by integrated two-way imputed values.
Bernaards, C. A., & Sijtsma, K. (2000). " Influence of imputation and EM methods on factor analysis when item nonresponse in questionnaire data is nonignorable." Multivariate Behavioral Research, 35(3), 321-364.DOI: 10.1207/S15327906MBR3503_03.
Twoway(test.data, Mvalue="NA",max.score=1,round.decimal=0)
Twoway(test.data, Mvalue="NA",max.score=1,round.decimal=0)